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The effects of higher order deformations on natural frequencies and buckling
stresses of a thick shallow shell with reactangular planform subjected to uniaxial
and biaxial in-plane stresses are studied. Based on the power series expansion of
displacement components, a set of fundamental dynamic equations of
a two-dimensional higher order shallow shell theory is derived through Hamilton’s
principle. Several sets of truncated approximate theories which can take into
account the complete effects of higher order deformations such as shear
deformations with thickness changes and rotatory inertia are applied to solve the
vibration and stability problems of a thick shallow shell. Three types of simply
supported shallow shells with positive, zero and negative Gaussian curvatures are
considered. In order to assure the accuracy of the present theory, convergence
properties of the lowest two natural frequencies for the first vibration mode
r = s = 1 are examined in detail. The present results are also compared with those
of existing theories. In the case of a simply supported shallow shell, buckling
stresses can be calculated from the natural frequencies without in-plane stresses.

© 1999 Academic Press

1. INTRODUCTION

A number of significant contributions have been made for vibration and stability
problems of shells, but most of them deal with closed shells having various shapes
and open shells have received little attention to date. In a review article on recent
research advances in vibration of thin and thick shadow shells, attention has been
given to the wide coverage of the classical, first order and higher order shallow shell
theories by Liew et al. [1]. Reference has also been made to three-dimensional
elasticity analyses of moderately thick shells. The practical importance of vibration
and stability analyses of singly curved and/or doubly curved shallow shells with
rectangular planform has been increased in structural, acrospace and mechanical
engineering applications. For thin shells, almost all the analyses of shells were
based on the classical theory, such as the Kirchhoff-Love theory which ignored the
transverse shear deformations and thickness changes. The free flexural vibration of
singly curved thin shallow shells of rectangular planform has been reported by Lim
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and Liew [2]. Based on the thin shallow shell theory, the pb-2 Ritz energy based
approach was employed by introducing a product of two-dimensional orthogonal
polynomials and a basic function for various boundary conditions into three
displacements. Recently, Liew and Lim [3] investigated the free flexural vibration
of thin doubly curved shells of rectangular planform by the same method. Shells of
positive, zero and negative Gaussian curvatures with six different combinations of
boundary conditions were analyzed. Although the vibration problems of thin
elastic shallow shells have been investigated extensively, much attention is now
being paid to thick shallow shells. The classical thin shallow shell theory has been
known to be inadequate for the vibration and buckling problems of higher modes
and also inadequate for thick shells when the effects of shell thickness on
frequencies and buckling stresses cannot be neglected. For thick concrete shallow
shells in architectural roof structures prestressing stress is often introduced in the
in-plane directions of the shell to avoid tensile stresses. The distribution of the
prestressing stress in the shell section is controlled through the prestressing strands.
In order to predict accurately the dynamic characteristics of thick shells subjected
to such prestressing stresses, more refined theories which are to incorporate the
effects of higher order deformations such as shear deformations with thickness
changes are needed. The effects of shear deformations and thickness changes have
been shown to influence the natural frequencies and buckling stresses of deep
beams [4] and thick plates [5] significantly. The same feature can be said about
thick shallow shells to which the classical shell theory is no longer applicable. In
order to incorporate the effects of shear deformations and thickness changes in the
plate and shell problems, two methods of analysis have been used, i.c., one is based
on the three-dimensional elasticity theory and the other, approximate
two-dimensional shell theory. The three-dimensional Ritz approach has been
developed on the basis of a three-dimensional elasticity theory for the analysis of
vibration of thick plates [6]. For the free vibration problem of a thick cylindrical
shell or panel, a three-dimensional solution method has been presented by Soldatos
and Hadjigeorgiou [7]. The governing equations of three-dimensional linear
elasticity were solved by using an iterative mathematical approach to obtain the
natural frequencies of a simply supported cylindrical shell.

By expanding the shell displacement components in power series of the thickness
co-ordinate, there exist approximate two-dimensional shell theories. Upon using
certain truncations of the power series, approximate shell theories which can take
into account the first order effects of transverse shear deformations have been
applied to cylindrical shells [8, 9]. Based on the first order and higher order shallow
shell theories, Ritz vibration analyses of moderately thick shallow shells have been
presented by Liew and Lim [10-13]. Since the normal displacement was assumed
to be constant through the thickness of a shell, the thickness change of the shell is
not allowed and the normal strain in the thickness direction vanishes. For
moderately thick and thick shallow shells, the effects of thickness changes as well as
shear deformations should be taken into account. However, two-dimensional
higher order theories of shallow shells which take into account the complete effects
of shear deformations with thickness changes and rotatory inertia have not been
investigated.
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This paper presents a two-dimensional higher order theory of thick shallow
shells which can take into account the complete effects of both shear deformations
with thickness changes and rotatory inertia. Several sets of the governing equations
of truncated approximate theories are applied to the analysis of vibration and
stability problems of a shallow shell subjected to in-plane stresses. On the basis of
the power series expansions of displacement components, a fundamental set of
dynamic equations of a two-dimensional higher order theory for the vibration
problem of thick shallow shells is derived through Hamilton’s principle. The
equations of motion of a shell subjected to in-plane stresses are expressed in terms
of the displacement components. Following the Navier solution procedure, the
displacement components are expanded into Fourier series that satisfy the simply
supported boundary conditions. Three types of simply supported shallow shells
with positive, zero and negative Gaussian curvatures are considered. Natural
frequencies of a thick shallow shell subjected to in-plane stresses are obtained by
solving the eigenvalue problem numerically. When the natural frequency vanishes
under the in-plane stresses, elastic buckling occurs and the critical buckling stress
relates with the natural frequency of the shell without in-plane stresses. The critical
buckling stress of simply supported shallow shells under uniaxial and biaxial
in-plane stresses can be predicted from the natural frequency of the shell without
in-plane stresses. The convergence properties of the present numerical solutions are
shown to be accurate for the natural frequencies and buckling stresses with respect
to the order of approximate theories. A comparison of the obtained natural
frequencies is also made with those of existing theories such as the classical shell
theory and the first order shear deformation shell theory. The present results
obtained by various sets of approximate theories are considered to be accurate
enough for thick shallow shells. It is noticed that the two-dimensional higher order
shallow shell theory in the present paper is useful for vibration and stability
problems of extremely thick shallow shells.

2. FUNDAMENTAL EQUATIONS OF KINEMATICS OF SHALLOW SHELLS

Introducing a curvilinear co-ordinate system x* (x = 1,2), x* on the middle
surface of a shell of uniform thickness &, the dynamic displacement components in
a shell are expressed as

Ua = 0,(x% X% 0), vy =us(x% x350), (1)

where t denotes time. The displacement components may be expanded into a power
series of the thickness co-ordinate x> as follows:

() o ()
0= D, (X%, va= ) o), 2
n=0 n=0
where n=0,1,2, ..., co.
Based on this expression of the displacement components, a set of linear
fundamental equations of a two-dimensional higher order theory for a thick
shallow shell can be summarized in the following.
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2.1. STRAIN-DISPLACEMENT RELATIONS

Strain components may be expanded as follows:

Z SE R Z () 733 = Z S (3", (3)

The expanded linear strain—-displacement relations of a shallow shell within the
assumption of h/R<« 1 (where R is the least principal radius of curvature) can be
written as [14]

(n) (n) (n) (n)

%xﬂ (Ua B + l)ﬂ o 2b(xﬂv3) (4)
(n) (n+ 1) (n) (n) (n+1)
Va3 = 3 {(n+1Dy, + U3,a}’ paz=m+1) vy, )

where b,; denotes the covariant component of curvature tensor of the shell middle
surface. Greek lower case subscripts are assumed to range over the integers 1, 2.
With the use of shallowness assumption of (L/R)*«1 (where L denotes the
wavelength of the deformation pattern), a comma indicates partial differentiation
with respect to the curvilinear co-ordinate subscripts that follow.

2.2. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

Introducing stress components s*, s*3 and s, Hamilton’s principle is applied to
derive the equations of dynamic equilibrium and natural boundary conditions of
a shell. In order to treat vibration and stability problems of a shell subjected to
in-plane stresses s% which distribute uniformly in x' and/or x* directions and
arbitrarily in the th1ckness direction, additional works due to these stresses which
are assumed to remain unchanged during vibration and/or buckling are taken into
consideration. Both the upper and lower surfaces of a shell are assumed to be
traction free. The principle for the present problems may be expressed for an
arbitrary time interval ¢, to t, as follows:

21
j f [P 07,5 + 25307,3 + $730y33 — (0700, + 0°003)
t vV

+ sz (vh,0v,. 5 + 03003 )] dV dr =0, (6)
where the over dot indicates partial differentiation with respect to time and

p denotes the mass density, and dV, the volume element. The in-plane stress s is
assumed to be expanded as the following power series:

g =) sP Y, (7)

where / =0,1,2, ..., ©
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By performing the variation as indicated in equation (6), the equations of motion
are obtained as follows:

n [ee) (m)
5;); Naﬁ_” Qﬁ + Z Z S v”ﬂf(n—i-m—i-/—i-l =p Y fin+m+1),(8)
m=0

/=0m=0

@ ) () -1 Z 0 m
Ovy: byyN* —nQ*, —n T + Z Y, s® a,;f(n+m+/+1)

/=0m=0

=p if(n+m+1)§§'3), )

m=0

where n,m =0,1,2, ..., o0, and the following equation is defined as

f(k)zjwz( et g _1< > [ (1] = 0, k is even, (10)
~hi2 %(ﬁ)k k is odd,
K\2)°

where k is an integer.
The stress resultants are defined as follows:

™) +h/2 - +1/2 @ +h/2
Noz[i — J' Saﬂ(x3)n dx3, Qa — Jv 813(x3)n dx3’ T = f S33(X3)" dx3.
—n/2 —n2
(11)

For the equations of boundary conditions along the boundaries on the middle
surface, the following quantities:

\ ) o0 () (m)

b or vﬂ[N“ﬁ + ) ) shrvfn+m+ L+ 1)} (12)
/=0m=0

m & O m

vy Or Vg Q/’-i-z Zsova m+m+7+1)], (13)
/=0m=0

are to be prescribed.

2.3. CONSTITUTIVE RELATIONS

For elastic and isotropic materials, the constitutive relations can be written as
s = Doo0** 0"y, + E10%(y3 + 07,), (14)

Sa3 = D005“V%, 533 = D00y33 + E1(“/§ + 5lvylv)a (15)
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where 6* is Kronecker’s delta and Lamé’s constants Dy, and E; are defined by
using Young’s modulus E and the Poisson ratio v as follows:

E _ vE

D=1 B =grya—ay (16)

2.4. STRESS RESULTANTS IN TERMS OF THE EXPANDED DISPLACEMENT COMPONENTS

Stress resultants can be expressed in terms of the expanded displacement
components as

m=

(n) D (m) m m
No= Y [ 77 0] 4 0 — 2bTy)
0

FE 5 (m+ 1) 1500 o, — %M%}}ﬂn+m+nJN)
() - Doo i <m+1) (m)
0* = Z 0 {(m+1 + 0y, [f(n4+m+1), (18)
Q) & m+1)  Ey S, om (m)
T= ) [(Doo+ Ey)m+1) 75 (0 + vy, — 2bs303)} 1 f(n 4+ m + 1),
m=0

(19)

where n,m=0,1,2, ..., 0.

2.5. EQUATIONS OF MOTION IN TERMS OF THE EXPANDED DISPLACEMENT COMPONENTS

The equations of motion can be expressed in terms of the expanded displacement
components as

(m+1)

(m) (m) (m))+E15cx,B(m+ 1) Us ]a

5;7";: 2 |:[5(D005M5Bv + E151B5M)(Uz, + 0y, — 2bsus

m=0

(m) n (m+1) (m)

—Pﬁﬂ}f(n+Wl+1)_§D005M[(m+ D7, 4oy, (n+m)

O (/) (m)
Z “’ly/’alfn+m+/+l)i| (20)
ovy: Y [{baﬂ [3(Doo 367 +E,36™) (5, + tn; — 2bs03) + E6%(m + 1) ]
m=0
D00 m+1)  (m (m)

0 m+1) v, +vs,]a—p*}f(n+m+1)
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(m+1)

(m) (m) (m)
—n[(Doo + E{)(m + 1) vy

P 4 8, — b m

0 (/)(m)
+Zs v mﬂfn+m+/+1)] 0. (21)

2.6. MTH ORDER APPROXIMATE THEORY

Since the fundamental equations mentioned above are complex, approximate
theories of various orders may be considered for the present problem. A set of the
following combination of displacement components for Mth (M > 1) order
approximate equations is proposed by

2M -1 ) 2M -2 (m)
vp = Zo yl,( 3ym, vy = Zo 03(x3)’", (22)
where m=0,1,2,3, ..., M
The total number of the unknown displacement components is (6M — 1). In the
above cases of M =1, an assumption of plane strains is inherently imposed.
Another set of governing equations of the lowest order approximate theory (M = 1)
is derived with the use of an assumption that the normal stress s*3 is zero which is
known as a first order shear deformation theory (FST) with the shear correction
coefficient k% = 1 in the case of plates and shells.
Under the assumption of plane stresses, the shear strain y,; must vanish through
the thickness of a shell and the lowest order approximate theory reduces to the
classical shell theory (CST).

3. FOURIER SERIES SOLUTION FOR A SIMPLY SUPPORTED SHALLOW
SHELL
In the followmg, the Cartesian co-ordinates are used(ne)lncril expressed a(s)x =x!
y = x?%, z = x* and the displacement components, y = p,, v = 172, w =y,
The mlddle surface of a shallow shell as shown in Fig. 1 is described by

_ 1 _fz_,_i _4 _b +L _éz (23)
TR\ T2) TR\ 2))VVT2) TR\ Y T 2)

where a and b are reference lengths of the shell planform. R, and R, are the radii of
curvature, in the x and y directions, respectively, and R,, is the radius of torsion.
The restrictive requirement in shallow shell theories that

(z.)*«1, Z z,<1, (z,)*«<1 (24)

must be added.
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Figure 1. Co-ordinates and geometry of a shallow shell with rectangular planform.

The components of curvature tensor b,; can be written as

1
by, = by = Z xy

b =Z = — = —_—
11 , XX ’ > >
Rx ny

1
b22 = Z,yy = E (25)

y

For a doubly curved shallow shell of rectangular planform, the middle surface of
a shell is assumed as follows:

£0, — =0 (26)

and three types of shallow shells with positive, zero and negative Gaussian
curvature 1/R,R, are considered in the present numerical examples.

Boundary conditions (12) and (13) for a simply supported shallow shell can be
expressed on the x-constant edges,

(n) ()

u,=0, ©v=0, w=0 (27)
and on the y-constant edges,
W=0, =0, W=o0. (28)

In the following analysis, the in-plane stresses are assumed to distribute
uniformly in the depth direction. Only the first term of the expanded in-plane stress

. . . © . . ..
(7) is considered, i.e., s2f = szf. In the present analysis, the following combination of
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the uniaxial (4 = 0) and biaxial (4 = 1) in-plane stresses is taken into consideration:
sy =Asg* and syt =s§F=0. (29)

Following the Navier solution procedure, displacement components that satisfy
the equations of boundary conditions (27) and (28) may be expressed as

o0 o0 o0 o0
m X . ST (n) m . IUX ST
=) Z U, COS —— sin by et o= Y v, sm—cosTy e, (30)
r=0s= a r=1s=0 a
0 [e¢]
(n) m . FUX . STy |
W= Y Y w,sin—sin Ty e, (31)
r=1s=1 a

where r and s are the displacement mode numbers, « denotes the circular frequency
and i, the imaginary unit.

The equations of motion are rewritten in terms of the generalized displacement
components, y,, v and w . The dimensionless natural frequency 2 and in-plane
stress /A in the x dlrectlon are defined as follows:

Q=owh/p/G, G=ER(1 +v), (32)

A =hs¥b? /D, D = ER3/12(1 — ). (33)

4. EIGENVALUE PROBLEM OF A THICK SHALLOW SHELL

Equations (20) and (21) can be rewritten by collecting the coefficients for the
generalized displacements of any fixed values r and s. The generalized displacement
vector {U} for the Mth order approximate theory is expressed as

(0) 2M-1) (0) 2M-1) (0) 2M-2)

{U}T_{urs"“’ Upg ;Urs""’ Urs ;Wrs""’ Wrs } (34)

For free vibration problems, the equations of motion can be expressed as the
following eigenvalue problem:

([K] — @*[M]){U} =0, 35)
where matrix [K] denotes the stiffness matrix which may contain the terms of the
in-plane stresses, and matrix [M], the mass matrix.

For stability problems, the natural frequency vanishes and the stability equation
can be expressed as the following eigenvalue problem:

(K] + A[S){U} =0, (36)
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where matrix [K] denotes the stiffness matrix, and matrix [S], the
geometric-stiffness matrix due to the in-plane stresses.

The power method [15] is used to obtain the numerical solution of the
eigenvalue problems. Although all the eigenvalues and eigenvectors can be
computed by this method for each deformation mode of r and s, the dominant
eigenvalues which correspond to the lower natural frequencies and critical buckling
stresses are of most concern.

5. NUMERICAL EXAMPLES AND RESULTS

5.1. NUMERICAL EXAMPLES

Natural frequencies and buckling stresses of a thick elastic shallow shell with
simply supported square edges (¢ = b) are analyzed for six numerical examples with
the thickness parameter

alh = 1,2, 4, 5, 10, 20. (37)

Since the thickness—curvature ratio is assumed to be h/R<« 1, the limit of this
parameter is taken to be h/R = 0-2. The curvature parameters a/Rx and b/Ry are
varied from O to =+ 0-4 for three types of shallow shells, i.c., spherical, cylindrical
and hyperbolic parabolidal shells. The Poisson ratio is fixed to be v = 0-3. All the
numerical results are shown in the dimensionless quantities.

Although the present sets of approximate theories of any order can easily be
applied to a moderately thick shell, higher orders of the expanded two-dimensional
theories may be necessary to obtain reasonably accurate solutions for an extremely
thick shell. It is noticed that the proper order of present approximate theories may
be estimated according to the level of thickness parameters of the shell.

Only the first term of the expanded in-plane stress in equation (7) is considered
and the natural frequencies of a thick shallow shell subjected to uniaxial and biaxial
in-plane tensile/compressive stresses are shown in the present examples.

5.2. CONVERGENCE OF THE FIRST TWO NATURAL FREQUENCIES AND COMPARISON
WITH THOSE OF EXISTING THEORIES

In order to verify the accuracy of the present solutions, the convergence proper-
ties of the first two natural frequencies Q, and 2, of shallow shells without in-plane
stresses for the displacement mode » = s =1 are shown in Table 1. They are
different from the case of plates that the two types of flexural and extensional
displacement modes are not separated from each other. The lower natural fre-
quency @, is predominantly flexural modes with some shear deformations, whereas
the upper frequency 2, is predominantly extensional modes with thickness cha-
nges. The numerical accuracy of the natural frequencies of plates has been shown in
a previous paper [5]. Since there is no data available to compare with the present
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TABLE 1

Convergence of the first two natural frequencies Q4, 2, for r = s = 1 and comparison
with other results (a = b)

M
a/h a/R,  b/R, CST FST 1 2 3 4
(a) Q4: Predominantly flexural mode ( first mode)
2 00 00  2:0270 1-4939 1-5597 1-5185 1-5158 «—
02 02  2:0280 1-4991 1-5643 1-5221 1-5191 «—
00  2-0189 14927 1-5580 1-5168 1-5140 <
—02 19973 14839 1-5487 1-5082 1-5054  «
0-4 04  2:0312 1-5143 1-5777 15326 1:5290  «
00 19983 1-4891 1-5532 1-5117 1-5088 «—
—04 19364 14563 1-5184 1-4795 14769  «
5 00 00 03732 0-3406 0-3454 0-3421 - «—
02 02 03777 0-3458 0-3505 0-3470 «— -
00 03739 0-3415 0-3463 0-3430 03429 «
—02 03715 0-3390 0-3439 0-3406 0-3405 «—
0-4 04 03909 0-3607 0-3652 0-3611 03610 «
00 03760 0-3442 0-3490 0-3454 «— -
—04 03665 0-3346 0-3394 0-3361 - «
(b) Q,: Predominantly extensional mode (second mode)
2 0-0 00 22214 « «— « « «
02 02 22214 « « « «— «
00 22306 2:2252 2:2254 2-2253 «— -
—02 22545 2:2362 2-2370 2-2365 - «
0-4 04 22214 «— « « «— «
00 22545 2:2362 2:2370 2-2365 - «—
—04 23253 2-2782 2-2810 2-2794 2-2793 «—
5 0-0 00 08886 — — — «— —
02 02 08886 « — «— «— «
0-0  0-8896 « « « — «
—02 08927 0-8926 «— «— «— «—
04 04 08886 « « — «— «
00 08927 0-8926 «— — «— «—
—04 09047 0-9045 «— — «— «—

Note: CST: Classical shallow shell theory (including the rotatory inertia).
FST: First order shear deformation theory (k? = 5/6).
M = 1: 33 = 0 [first order shear deformation theory (x* = 1)].

results of simply supported thick shallow shells, a direct comparison of the present
solutions with those of the classical shallow shell theory (CST) in which the effect of
extension and rotatory inertia are included is made. The present natural frequencies
are also compared with the result based on a first order shear deformation theory
(FST) which corresponds to the Mindlin plate theory in which a shear correction
factor k2 is introduced to correct the contradictory shear stress distribution over
the thickness of the shell. It is noticed that the proper order of the present
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approximate theories may be estimated according to the level of a/h and a/R,.
Since the present results for M =1 — 3 converge accurately enough within the
present order of approximate theories, only the more accurate numerical results for
M =5 are discussed in the following.

5.3. NATURAL FREQUENCIES WITHOUT IN-PLANE STRESSES

The first nine natural frequencies of shallow shells without in-plane stresses are
shown in Table 2 for all values of a/h and selected curvature parameters of a/R, and
b/R, within the assumption of the shallow shell theory. The mode classification
number of three figures on the right shoulder of natural frequencies in Table
2 defines the vibration mode. The first and second figures denote the mode numbers
of r and s, respectively, and the last figure, the mode order number which
corresponds to displacement distributions in the thickness direction, i.e., “123”,
shows the third vibration mode for r = 1, s = 2. For thin shells, as shown in the
results from the classical shell theory, only the lowest frequencies for each mode
number of r and s appear in the set of the first nine frequencies. However, for thicker
shells, higher frequencies for a lower mode number of r and s will appear in
accordance with the thickness parameter a/h.

In the case of a plate with the thickness parameter a/h = 10, the present results
agree with the exact values of the three-dimensional elasticity theory [16]. Natural
frequencies of the in-plane shear mode agree with the numerical solutions of
a combined finite-element and Rayleigh-Ritz method [17]. For very thick plates
with the thickness parameter a/h = 2 and 5, the present results agree with recent
results yielded by a continuum three-dimensional Ritz formulation [6].

5.4. NATURAL FREQUENCIES VERSUS IN-PLANE STRESSES CURVES AND
BUCKLING STRESSES

In Figures 2(a,b), the variation of the lowest two natural frequencies for r = s = 1
with respect to in-plane stresses is shown for a/h = 2 and 5. Figure 2(a) shows the
results for uniaxial in-plane stresses (4 = 0) and Figure 2(b), for biaxial ones (4 = 1).
The open circle and square show the natural frequencies which correspond to
predominantly flexural (2;) and extensional (2,) modes with some shear
deformation and thickness change respectively. The second natural frequency 2, is
nearly constant for all the values of in-plane stresses. When the lowest natural
frequency Q; vanishes, the in-plane stresses reduce to the critical buckling stresses
of the shallow shells. The first frequency curve (£2,) will decrease rapidly prior to
buckling and the frequency vanishes at the in-plane buckling stress.

The buckling stresses can be calculated usually through the stability equation
(36) as eigenvalue problems. In the case of a simply supported shallow shell
subjected to arbitrary in-plane stresses A, the natural frequency @, can be expressed
explicitly with reference to the natural frequency 2, of a shell without in-plane
stresses. The relation between Q, and 2, can be obtained from a comparison of the
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equations of motion as follows:

2 _ 02 n’ Y o
Qa—QO—Fm(E) (OC +/Lﬁ )/1, (38)
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Figure 2(a). The first two natural frequencies Q,,Q, for r =s =1 versus uniaxial in-plane
stress A (4 = 0; a = b; left side: a/h = 2; right side: a/h = 5). (a) Spherical shell, a/R, = b/R, = 0-4.
(b) Cylindrical shell, a/R, = 0-4, b/R, = 0-0. (c) Hyperbolic paraboloidal shell, a/R, = — b/R, = 0-4.
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Figure 2(b). The first two natural frequencies Q;, 2, for r = s = 1 versus biaxial in-plane stress
A (A=1; a=b; left side: a/h =2; right side: a/h =5). (a) Spherical shell, a/R, = b/R, = 0-4.
(b) Cylindrical shell, a/R, = 0-4, b/R, = 0-0. (c) Hyperbolic paraboloidal shell, a/R, = — b/R, = 0-4.

o=TrT <Z>, p=sn <%> (39)

When the natural frequency €, vanishes under the in-plane stresses, elastic
buckling occurs and the critical buckling stress A relates with the natural

where



VIBRATION AND STABILITY OF SHALLOW SHELLS 57

frequency 2, as

61—y b\ 1 s
Au=—""0 <E> (o + ip%) 2. (40)

The critical buckling stresses of simply supported shallow shells subjected to
in-plane stresses can be predicted from the natural frequency of the shell without
in-plane stresses. The calculated critical buckling stresses of simply supported
square shells under in-plane compressions are shown in Table 3 for the first
vibration mode r = s = 1.

5.5. EFFECT OF CURVATURES ON NATURAL FREQUENCIES

The effects of curvatures or shell configurations on the natural frequencies of
shells are very interesting in comparison with plates. As seen in Table 2, these effects
are not so remarkable within the range of slightly curved shallow shells.
A qualitative representation may be seen in Figure 3. The difference distributions of
the natural frequencies between shells and plates with square planform for the first
two natural frequencies (27 , — Q¥ ;) of r = s = 1 are plotted in the figures. The
lower (first) natural frequency Q;(111) corresponds to a predominantly flexural
mode with shear deformations, whereas the upper (second) frequency Q,(112)
corresponds to a predominantly extensional mode with thickness changes. The
curvature parameter a/R, varies from 0-0 to + 0-4 and b/R,, from — 0-4 to + 04
for shallow shells with the thickness parameter a/h = 2 and 5.

6. CONCLUSIONS

Natural frequencies of thick shallow shells calculated by using the classical
shallow shell theory are usually overpredicted. In order to analyze the complete
effects of higher order deformations on the natural frequencies of thick shallow
shells, various orders of the expanded approximate shallow shell theories have been
presented. The natural frequencies have been calculated for three types of simply
supported thick shallow shells with positive, zero and negative Gaussian
curvatures. It has been shown that shear deformations and thickness changes have
an important effect on the natural frequencies of thick shallow shells with and/or
without in-plane stresses.

The following conclusions may be drawn from the present analysis:

(1) In order to verify the accuracy of the present results, the convergence properties
of the numerical solutions according to the order of approximate theories have
been examined. The numerical convergence of the first two natural frequencies
for simply supported shallow shells without in-plane stresses has been examined
in detail. The first nine natural frequencies of simply supported shallow shells
without in-plane stresses have been obtained for all the values of a/h and several
displacement modes. The present results obtained for M = 5 are considered to
be accurate enough for extremely thick shallow shells with small a/h. It is noted
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TABLE 3

Buckling stresses calculated from the natural frequencies without in-plane stresses
(ab=1r=s=1,v=03)

A
a/h a/R, b/R, Q A=0 J=1
1 00 00 3-7419 0-6037 03019
01 01 37414 06036 03018

00 37387 06027 03013

—01 3-7298 0-5998 02999

02 02 3-7399 06031 03015

00 3-7294 05997 02999

—02 3-6963 0-5891 02946

2 00 00 1:5158 1-5851 07925
02 02 1:5191 1-5920 07960

00 1:5140 1-5813 07907

—02 1:5054 1:5634 07817

04 04 1:5290 1-6128 0-8064

00 1.5088 1:5705 07852

—04 1-4769 1-5048 07524

4 00 00 0-5066 2-8328 14164
02 02 05113 2-8856 1-4428

00 05071 28384 14192

—02 0-5041 2-8049 1-4025

04 04 0-5249 3-0412 1:5206

00 0-5088 2-8575 1-4287

—04 04971 27276 1:3638

5 00 00 03421 31538 1:5769
02 02 03470 3-2448 1-6224

00 03429 31686 1:5843

—02 03405 31244 1:5622

04 04 03610 35119 17560

00 03454 3-2150 1-6075

—04 03360 3-0423 1:5212

10 00 00 009315 37412 1-8706
02 02 009826 41630 2:0815

00 009436 3-8391 19195

—02 009276 37100 1-8550

04 04 0-1120 5-4086 27043

00 009785 41283 20642

—04 009163 36201 1-8101

20 00 00 002387 39307 19654
02 02 002872 5-6904 2-8452

00 002515 43636 21818

—02 002378 3-9012 19506

04 04 003975 10-9004 5-4502

00 002861 5-6468 2-8234

—04 0-02349 3-8066 1-9033
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alR

Gi)alh=35

Figure 3. Difference distribution of the first two natural frequencies between shells and plates
(Q,—Q%,) for r=s=1 with respect to curvature parameters [0-0<a/R,< + 04,
— 04 <b/R, < + 04; a = b; left side: Q; (111); right side: 2, (112)].

that the two-dimensional higher order shallow shell theories in the present
paper can predict the natural frequencies of a simply supported thick shallow
shell accurately.

(2) For the lowest mode r = s = 1, the first two natural frequencies of simply
supported shallow shells subjected to uniaxial and biaxial in-plane stresses have
been obtained for all the values of a/h and several displacement modes. When
the lowest natural frequency vanishes, the in-plane stresses reduce to the critical
buckling stresses of shallow shells. It is necessary to take into account the
complete effects of higher order deformations such as shear deformations and
thickness changes for the analysis of vibration and stability problems of thick
shallow shells.
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